Structure of semiconducting versus fast-ion conducting glasses in the Ag–Ge–Se system
نویسندگان
چکیده
The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Ag x (Ge0.25Se0.75)(100-x) tie line (0≤x≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x=5 and x=25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag-Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag-Se coordination number increases from 2.6(3) at x=5 to 3.3(2) at x=25. For x=25, the measured Ag-Ag partial pair-distribution function gives 1.9(2) Ag-Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se-Se homopolar bonds as silver is added to the Ge0.25Se0.75 base glass, and the limit of glass-formation at x≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se-Se homopolar bonds as silver is added to the base glass.
منابع مشابه
Microstructure, mechanical and thermal properties of chalcogenide glasses and glass-ceramics based on Se-As-Ge system nucleated by Sn
In particular, chalcogenide glasses and glass-ceramics are new materials that exhibit good transparency in infrared region (0.8-12µm). We can overcome the main weakness of these glasses by improving the hardness through controlling crystallization. In this paper, we report results of a study on chalcogenide glasses in the ternary system of As-Se-Ge with nominal composition of Snx (Se...
متن کاملN anoscale phase separation in Ag–Ge–Se glasses
We have investigated the materials formed by Ag photodiffusion in Se-rich Ge–Se thin glass films. The amount of Ag that can be incorporated by this method saturates at a level dependent on the quantity of Se in the starting glass. The photodiffused Ag reacts with the Se to form distinct Ag Se and Ge-rich backbone phases as 2 determined by Raman and XRD analyses. The conducting Ag Se phases exis...
متن کاملSilver incorporation in Ge–Se glasses used in programmable metallization cell devices
We investigate the nature of thin films formed by the photodissolution of Ag into Se-rich Ge–Se glasses for use in programmable metallization cell devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states. The way in which Ag incorporates into the chalcogenide film during photodiffusion is examined using Rutherford backscattering ...
متن کاملFabrication and Structural Characterization of Se-Ge Chalcogenide Glasses by Means of Melt Quenching Technique
The structural and optical characterization of Se-Ge alloys during melt quenching technique was the goal of this study. In this regards, five different samples of Se100-xGex (x= 10, 20, 30, 40, 50) were prepared by conventional melt quenching in quartz ampoule. The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calori...
متن کاملCorrelation between I-Ag distance and ionic conductivity in AgI fast-ion-conducting glasses.
A large number of AgI-based fast-ion-conducting glasses have been investigated by K-iodine extended x-ray absorption fine structure spectroscopy (EXAFS) measurements at liquid nitrogen temperature. A general correlation between the I-Ag distance measured by EXAFS and the glass activation energy for dc ionic conductivity has been found out: glasses with longer I-Ag distances display higher ionic...
متن کامل